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Higher-order moments at the critical point of the Ziff-Gulari-Barshad model
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We studied the continuous phase transition between the active and the absorbing state of the Ziff-Gulari-
Barshad(ZGB) model. Through Monte Carlo simulations we determined all the moments of the order param-
eter up to fourth order and their ratios at the critical point. We show that the ratios we found are in agreement
with those of the contact and pair contact processes in two dimensions, which give support to the idea that the
ZGB model is in the directed percolation universality clas$2i 1) dimensions.
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. INTRODUCTION and fory.,=Yy,, a completely poisoned CO state is found.
On the other hand, foy;<y<Yy,, a reactive steady state is

In this paper we determine the moment ratios at the critiformed, with a nonzero number of vacant sites. In this paper
cal point of the Ziff-Gulari-BarshadZGB) model in two  we focus our attention on the continuous transition that oc-
dimensions. Our strategy follows the same reasoning as adurs aty,. The remainder of this paper is organized as fol-
vanced by Dickman and Leal da Silva in their recent twolows: in Sec. Il, we present the model and the moment ratios
papers[1,2]. In these works they chose suitable ratios be-of interest, and in Sec. Ill, we describe the results of Monte
tween moments of the order parameter of Amodel[3]in  Carlo simulations and also present our conclusions.
one dimension, and the contact proce$kand pair contact
process[5,6] in one and two dimensions. After calculating Il. MODEL AND THE MOMENT RATIOS
the critical exponents and the moment ratios at the critical

X Near the continuous phase transitiorygtwe choose the
point for all these models, they c.onclu<_jed that they .belong. Qraction of vacant site¢n,) as the order parameter for the
the appropriate one- or two-dimensional DP universalit '

| We will sh h lculati for th YZGB model. Different from the usual continuous transitions
class. We will show that our calculations for the moment;, qiy sysiems, where up-down symmetries are present, the
ratios of the ZGB model, extrapolated to large lattice sizes

. order parameter for the ZGB model can only be zero or
agree with those found by these authors for the models theYgiive. In this way, odd moments must be included if we
studied in two dimensions. are interested in a proper expansion in cumulants. We con-

Let us briefly present the ZGB model. This model, pro-gjgereq all the moments up to fourth order, which are defined
posed by Ziff, Gulari, and Barshdd], is the simplest one by my=(nk), with k=1,2,3,4, and the second-order cumu-

used to explain the irreversible oxidation of CO mOIGCUIEﬁam defined byQ,=m,—mZ. In order to determine these

on a catalyst surface. In the ZGB surface reaction modeII,n ¢ first d to locate th itical boint Wh
molecules of CO and Dare adsorbed on a square lattice, oments, we Tirst need to locate the critical pyy en
Me try applying finite-size scaling arguments to the ZGB

rding to their partial pr res in th hase. T . .
\?V%Co?ed pr% c(()assefol?(?wsatﬁ eeSL?a% ge:mir-H?ngsﬂZIev(\;gzdp n?gsh gmodel, we must be careful, due to the existence of absorbing

nism and the following three steps must be considered: states. For a finite sample very near to the critical point, the
" system always poisons. Indeed, to circumvent these prob-

(1) CO(g) +V—CO(a), lems, we study the quasistationary states of a large number
(2) O,(g) +2V—20(a), of surviving samples in order to properly evaluate the statis-
(3) CO(a) +O(a)—COx(g) + 2V, tical means of interest. The transient times depend on the

linear sizeL of the system and on the distance from the
where the labels andg denote adsorbed and gaseous paritical point y;, which is measured by the parametr
ticles, respectively, anl is a vacant site. Stefd) and(2) ~ —y__y. Then, for largel and smallA, the quasistationary

describe the adsorption of the molecules CO apdr@spec-  order parameter can be described by the equation
tively, and the third step represents the reaction between the

adsorbed species to form the €@olecule. When the © my(A, L)L~ (BPIf (ALY, (1)
molecule arrives at the surface it dissociates completely. Theh th ling functiof(x)<x? for | | &
reaction occurs instantaneously when a CO molecule sees'q cr€ the scaling tunctio .(X) X™ for large vajues ox. B
nearest-neighbor O atom. To describe the whole process wa the order-parameter grltlcal eXpor!e”t andis t'he critical
need only a single parameter, which is taken as the relativ%xpongnt ass_omated with _the spatial correlation length. At
adsorption rate of CO molecules, denotedyby. The Monte e critical point we can write that
Carlo simulations performed by these authors show the ap- my(O,L)ocL = (Ao, 2
pearance of active and nonactive states in the phase diagram.

For instance, foly,,<Y;, an O poisoned state is observed, For the calculation of the higher moments, it is interesting to
introduce the probability distributio®(n, ,L) for the den-

sity of vacant sites at the critical point. In this way tkih
*Email address: wagner@fisica.ufsc.br moment of the order parameter can be computed by
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FIG. 1. Stationary density of vacant sites vs system size for F|G. 3. Ratiom3/m§ VS Yoo System sizes =20, 40, 60, 80,

Yeo=0.385, 0.386, 0.3875, 0.389, and 0.3%®m bottom to top.

The critical point is determined from the straight line.

wherel, is independent ok in the largek limit [8]. There-
fore, for large values of, we can form some ratios between

1
mk=f n“P(n,,L)dn, =1L~ &&"w),
0

powers of the moments such as
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FIG. 2. Rationlmf VS Y. System sized =20, 40, 60, 80,
100, and 120 are in order of increasing steepness.
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100, and 120 are in order of increasing steepness.

If kr=Is, this ratio is independent df at the critical point.
Then, we expect that plots of these ratios, or a combination
of them, as a function of.,, must intercept themselves at
the critical point for any value ok. In particular, we have
considered the following five ratios at the critical point of the
ZGB model: Q,/m?, m,/m3, mg/m3, mg/m;m,, and

2
m,/mj.

IIl. RESULTS AND CONCLUSIONS

We have performed simulations for the ZGB model on a
square lattice with linear dimensions ranging frars 10 to
L=120. We started all simulations with an empty lattice and
used periodic boundary conditions. In order to speed the
simulations we have kept a list of empty sites where the
adsorption of the species CO ang @e made. For each
value of the deposition ratg., of the CO molecules, we
generate a random number to know what molecule will be
deposited in the next step. If we choose CO, a site of the list
is chosen at random for deposition, while for the deposition
of O,, we need to choose at random a pair of nearest neigh-
bors from the list. After any trial of the deposition of a given
species we investigate its neighborhood looking for reac-
tions, and an update of the list is immediately performed.

First, we need to locate the critical point of the model. In
this way we examine the stationary values of the density of
vacant siteam, for different lattice sizes. For instance, for
the lattice sizeL=20, the averages were computed for
1.5x 10° independent samples, and we considered a time in-
terval between 300 to 500 MC'’s where the samples exhibited
a quasistationary behavior. On the other hand, for the largest
lattice sizeL =120, we took 1.6 10° samples, and the time
interval for the quasistationary states was X7®* until
1.80x 10%. In Fig. 1 we exhibit a log-log plot of the density
m; vs L. From this plot, we observe that the best fit to the
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FIG. 4. Ratiomzlmi VS Y. System sized =20, 40, 60, 80, FIG. 5. Order-parameter moment ratios for the ZGB model at
100, and 120 are in order of increasing steepness. the critical point. Squaresn,/m?; diamonds:m,/m3; down tri-

. . angles:mz/m;m,; up triangles:m3/mf; and circles:m4/m§.
power law given by Eq(2), corresponds to a critical value of

y;=0.3875:0.0002. The curves foy.,=0.3860 andy,., 3

~0.3890 clearly depart from the straight line behavior. For™9-09, mg/m; =2.06+0.03, mg/m;m,=1.55+0.02, and

the straight line at the critical poiyt,=0.3875, we obtained M2/mM;=1.33+0.01. As we note these ratios are in close

the exponent ratigg/ v, =0.804+0.008. This value appears agreement with those found in Refsl] and [2], for the

to be in good agreement with that foreseen by Gringem. ~ contact and the pair contact process models, respectively.

[9] for directed percolation ifi2+1) dimensions, wherg, In summary, we have investigated the critical properties

=0.63+0.03 andv, =0.85+0.05. of the ZGB r_’nodel at thga. continuous phase transition. We
Figure 2 represents the plot of the ra@g /m? as a func- hav_e de_t_ermmec_j the critical point and the corresponding

tion of y, for the lattice sized =20,4Q . . .,120. We clearly Static critical ratio between the exponengsand v, . We

see that all the curves cross themselves around the criticBRVe also computed some moment ratios of the order param-

point y;=0.3875, as to be expected. The same behavior i§t€" at the critical point. We have seen that they are in agree-

observed for all the other moment ratios that we have conMent with similar ratios found for the contact and the pair

sidered, as we see in Figs. 3 and 4, where we have plotteﬁontaCt processes in two dimensions. Our calculations for the

for exar,nple the ratiosns/m? and m2’/m2 VS Yoy, rESPEC- ZGB model corroborate all the previous reasoning that it is
’ 1 1 co»

tively in the same universality class of the directed percolation in

Finally, in Fig. 5, we exhibit our results for all the mo- (2+1) dimensions.
ment ratios, calculated at the critical poipt, versus the
lattice sizeL. We observe only a very slight dependence of
the moment ratios on the lattice sizeA linear extrapolation
of these ratios fot. —«, taking only the four largest lattice This work was supported by the Brazilian agencies
sizes, i.e.,L=90, 100, 110, and 120, gives the following CAPES, CNPq, and FINEP. The authors also thank Ron
results for the ratiosQ,/m?=0.33+0.01, m,/m3=1.95 Dickman for the helpful suggestions.
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