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Higher-order moments at the critical point of the Ziff-Gulari-Barshad model
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We studied the continuous phase transition between the active and the absorbing state of the Ziff-Gulari-
Barshad~ZGB! model. Through Monte Carlo simulations we determined all the moments of the order param-
eter up to fourth order and their ratios at the critical point. We show that the ratios we found are in agreement
with those of the contact and pair contact processes in two dimensions, which give support to the idea that the
ZGB model is in the directed percolation universality class in~211! dimensions.
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I. INTRODUCTION

In this paper we determine the moment ratios at the c
cal point of the Ziff-Gulari-Barshad~ZGB! model in two
dimensions. Our strategy follows the same reasoning as
vanced by Dickman and Leal da Silva in their recent t
papers@1,2#. In these works they chose suitable ratios b
tween moments of the order parameter of theA model@3# in
one dimension, and the contact process@4# and pair contact
process@5,6# in one and two dimensions. After calculatin
the critical exponents and the moment ratios at the crit
point for all these models, they concluded that they belon
the appropriate one- or two-dimensional DP universa
class. We will show that our calculations for the mome
ratios of the ZGB model, extrapolated to large lattice siz
agree with those found by these authors for the models
studied in two dimensions.

Let us briefly present the ZGB model. This model, pr
posed by Ziff, Gulari, and Barshad@7#, is the simplest one
used to explain the irreversible oxidation of CO molecu
on a catalyst surface. In the ZGB surface reaction mo
molecules of CO and O2 are adsorbed on a square lattic
according to their partial pressures in the gaseous phase
whole process follows the Langmuir-Hinshelwood mech
nism and the following three steps must be considered:

~1! CO(g)1V→CO(a),
~2! O2(g)12V→2O(a),
~3! CO(a)1O(a)→CO2(g)12V,

where the labelsa and g denote adsorbed and gaseous p
ticles, respectively, andV is a vacant site. Steps~1! and ~2!
describe the adsorption of the molecules CO and O2, respec-
tively, and the third step represents the reaction between
adsorbed species to form the CO2 molecule. When the O2
molecule arrives at the surface it dissociates completely.
reaction occurs instantaneously when a CO molecule se
nearest-neighbor O atom. To describe the whole process
need only a single parameter, which is taken as the rela
adsorption rate of CO molecules, denoted byyco. The Monte
Carlo simulations performed by these authors show the
pearance of active and nonactive states in the phase diag
For instance, foryco<y1, an O poisoned state is observe
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and for yco>y2, a completely poisoned CO state is foun
On the other hand, fory1,y,y2, a reactive steady state i
formed, with a nonzero number of vacant sites. In this pa
we focus our attention on the continuous transition that
curs aty1. The remainder of this paper is organized as f
lows: in Sec. II, we present the model and the moment ra
of interest, and in Sec. III, we describe the results of Mo
Carlo simulations and also present our conclusions.

II. MODEL AND THE MOMENT RATIOS

Near the continuous phase transition aty1, we choose the
fraction of vacant siteŝnv& as the order parameter for th
ZGB model. Different from the usual continuous transitio
in spin systems, where up-down symmetries are present
order parameter for the ZGB model can only be zero
positive. In this way, odd moments must be included if w
are interested in a proper expansion in cumulants. We c
sidered all the moments up to fourth order, which are defin
by mk5^nv

k&, with k51,2,3,4, and the second-order cum
lant defined byQ25m22m1

2. In order to determine thes
moments, we first need to locate the critical pointy1. When
we try applying finite-size scaling arguments to the ZG
model, we must be careful, due to the existence of absorb
states. For a finite sample very near to the critical point,
system always poisons. Indeed, to circumvent these p
lems, we study the quasistationary states of a large num
of surviving samples in order to properly evaluate the sta
tical means of interest. The transient times depend on
linear sizeL of the system and on the distance from t
critical point y1, which is measured by the parameterD
5yco2y1. Then, for largeL and smallD, the quasistationary
order parameter can be described by the equation

m1~D,L !}L2(b/n') f ~DL1/n'!, ~1!

where the scaling functionf (x)}xb for large values ofx. b
is the order-parameter critical exponent andn' is the critical
exponent associated with the spatial correlation length.
the critical point we can write that

m1~0,L !}L2(b/n'). ~2!

For the calculation of the higher moments, it is interesting
introduce the probability distributionP(nv ,L) for the den-
sity of vacant sites at the critical point. In this way thekth
moment of the order parameter can be computed by
©2001 The American Physical Society04-1
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mk5E
0

1

nv
kP~nv ,L !dnv5I kL

2(kb/n'), ~3!

whereI k is independent ofL in the large-L limit @8#. There-
fore, for large values ofL, we can form some ratios betwee
powers of the moments such as

mk
r

ml
s

}L2(b/n')(kr2 ls). ~4!

FIG. 1. Stationary density of vacant sites vs system size
yco50.385, 0.386, 0.3875, 0.389, and 0.390~from bottom to top!.
The critical point is determined from the straight line.

FIG. 2. RatioQ2 /m1
2 vs yco. System sizesL520, 40, 60, 80,

100, and 120 are in order of increasing steepness.
03610
If kr5 ls, this ratio is independent ofL at the critical point.
Then, we expect that plots of these ratios, or a combina
of them, as a function ofyco, must intercept themselves a
the critical point for any value ofL. In particular, we have
considered the following five ratios at the critical point of th
ZGB model: Q2 /m1

2, m4 /m2
2, m3 /m1

3, m3 /m1m2, and
m2 /m1

2.

III. RESULTS AND CONCLUSIONS

We have performed simulations for the ZGB model on
square lattice with linear dimensions ranging fromL510 to
L5120. We started all simulations with an empty lattice a
used periodic boundary conditions. In order to speed
simulations we have kept a list of empty sites where
adsorption of the species CO and O2 are made. For each
value of the deposition rateyco of the CO molecules, we
generate a random number to know what molecule will
deposited in the next step. If we choose CO, a site of the
is chosen at random for deposition, while for the deposit
of O2, we need to choose at random a pair of nearest ne
bors from the list. After any trial of the deposition of a give
species we investigate its neighborhood looking for re
tions, and an update of the list is immediately performed

First, we need to locate the critical point of the model.
this way we examine the stationary values of the density
vacant sitesm1 for different lattice sizes. For instance, fo
the lattice sizeL520, the averages were computed f
1.53105 independent samples, and we considered a time
terval between 300 to 500 MC’s where the samples exhib
a quasistationary behavior. On the other hand, for the lar
lattice size,L5120, we took 1.03103 samples, and the time
interval for the quasistationary states was 1.753104 until
1.803104. In Fig. 1 we exhibit a log-log plot of the densit
m1 vs L. From this plot, we observe that the best fit to t

r FIG. 3. Ratiom3 /m1
3 vs yco. System sizesL520, 40, 60, 80,

100, and 120 are in order of increasing steepness.
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power law given by Eq.~2!, corresponds to a critical value o
y150.387560.0002. The curves foryco50.3860 andyco
50.3890 clearly depart from the straight line behavior. F
the straight line at the critical pointy150.3875, we obtained
the exponent ratiob/n'50.80460.008. This value appear
to be in good agreement with that foreseen by Grinsteinet al.
@9# for directed percolation in~211! dimensions, wherebo
50.6360.03 andn'50.8560.05.

Figure 2 represents the plot of the ratioQ2 /m1
2 as a func-

tion of yco for the lattice sizesL520,40, . . . ,120. We clearly
see that all the curves cross themselves around the cr
point y150.3875, as to be expected. The same behavio
observed for all the other moment ratios that we have c
sidered, as we see in Figs. 3 and 4, where we have plo
for example, the ratiosm3 /m1

3 and m2 /m1
2 vs yco, respec-

tively.
Finally, in Fig. 5, we exhibit our results for all the mo

ment ratios, calculated at the critical pointy1, versus the
lattice sizeL. We observe only a very slight dependence
the moment ratios on the lattice sizeL. A linear extrapolation
of these ratios forL→`, taking only the four largest lattice
sizes, i.e.,L590, 100, 110, and 120, gives the followin
results for the ratios:Q2 /m1

250.3360.01, m4 /m2
251.95

FIG. 4. Ratiom2 /m1
2 vs yco. System sizesL520, 40, 60, 80,

100, and 120 are in order of increasing steepness.
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60.09, m3 /m1
352.0660.03, m3 /m1m251.5560.02, and

m2 /m1
251.3360.01. As we note these ratios are in clo

agreement with those found in Refs.@1# and @2#, for the
contact and the pair contact process models, respectivel

In summary, we have investigated the critical propert
of the ZGB model at the continuous phase transition.
have determined the critical point and the correspond
static critical ratio between the exponentsb and n' . We
have also computed some moment ratios of the order par
eter at the critical point. We have seen that they are in ag
ment with similar ratios found for the contact and the p
contact processes in two dimensions. Our calculations for
ZGB model corroborate all the previous reasoning that i
in the same universality class of the directed percolation
~211! dimensions.

ACKNOWLEDGMENTS

This work was supported by the Brazilian agenc
CAPES, CNPq, and FINEP. The authors also thank R
Dickman for the helpful suggestions.

FIG. 5. Order-parameter moment ratios for the ZGB mode
the critical point. Squares:m2 /m1

2; diamonds:m2 /m1
2; down tri-

angles:m3 /m1m2; up triangles:m3 /m1
3; and circles:m4 /m2
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